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Abstract—For overcomes several shortcomings of the inverse control design to controlling nonlinear systems using the neural 
networks as the controller based self tuning regulator. The magnetic levitation parameters are estimated online and are used to update 
the weights of the RBFNN. The weight update equations are derived based on the least mean squares principle. The RBFNN virtually 
models the inverse of the plant and thus the output tracks the reference trajectory. The proposed algorithm is successfully verified using 
simulations. Then, this paper compared its result with the outcome of using proportional-plus-integral feedback (PI) self tuning 
regulator. 
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1. INTRODUCTION 
daptive control schemes are used for the control of plants, 
where the parameters of the plant are not known exactly or 

slowly time varying. Some reasons for using Adaptive control 
such as variations in process dynamics and variations in the 
character of the disturbances [1, 2]. In many practical 
applications it is, however, difficult to determine the parameters 
of the controller, since the dynamics of the process and its 
disturbances are unknown. The parameters of the process thus 
have to be estimated. For stationary processes it is possible to 
determine the unknown parameters through identification. The 
experiments and their evaluations can, however, be rather time 
consuming. It is thus desirable to have a regulator which tunes 
its parameters on-line. 
Enzeng and others [3] present a neural network based self 
tuning PID controller for autonomous underwater vehicle, the 
control system consists of neural network identifier and neural 
network controller, and the weights of neural networks are 
trained by using Davidon least square method, also[4]. 
Neural network (NN) is a good structure for control the 
nonlinear plants and has many types [5, 6]. Kumar [7] used 
neural network for modeling the retention process and as 
controller. In this paper, we used the RBFNN as a controller. 
This type is faster one and uses least number of neurons at 
hidden layer [8, 9]. The inverse control means that the 
controller (RBFNN) acts the inverse of the plant (magnetic 
levitation) so the output tracks the reference input. 
Sabahi [10] used a new adaptive and nonlinear control based on 
neural network approaches, this method has been named 
feedback error learning (FEL) approaches, that classical 
controller is used for training of neural network feedforward 

controller. Pal [11] proposed a simple self-tuning scheme for 
PI-type fuzzy logic controllers (FLCs) for a real time water 
pressure control system. This scheme is improved performance 
of the system even at load change and set point variations. Kota 
[12] used PID controller and fuzzy logic controller for control 
separately excited dc motor. Fuzzy self-tuning PID has better 
dynamic response curve, shorter response time, small 
overshoot, and small steady state error compared to the 
conventional PID controller. Saad [13] proved that the 
proposed Neural Network (NN) self-tuning PID controller is 
more efficient to control the robot manipulator to follow the 
desired trajectory compared to classical tuning method of PID 
controller. 
Vali U. and M Yasir Amir [14] proposed Direct Inverse Control 
scheme of a simple nonlinear dynamic system. The idea is to 
train a neural network as an inverse of plant so as to cancel out 
the plant dynamics and to make plant follow the reference 
input. 
A lot of research effort in control system field has been focused 
on the control of a Magnetic Levitation System (MLS). They 
are widely used in various fields such as frictionless bearings, 
high-speed Maglev passenger trains, levitation of wind tunnel 
models, vibration isolation of sensitive machinery, levitation of 
molten metal in induction furnaces and the levitation of metal 
slabs during manufacture. MLS are generally highly nonlinear 
and open loop unstable systems.      The inherent nonlinearities 
of systems make the modeling and control problems very 
challenging. 
Sakslli [15] compared the closed loop control performance of 
interval type-2 fuzzy PID controller with the type-1 fuzzy PID 
and conventional PID controller's counterparts for the Magnetic 
Levitation Plant. Dragan [16] presented analysis of different 
training types for nonlinear autoregressive neural network, used 
for simulation of magnetic levitation system. It is verified that 
NARX neural network can be successfully used to simulate real 
magnetic levitation system if suitable training procedure is 
chosen, and the best two training types, obtained from 
experimental results. suster [17] Designed control algorithm 
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together with simulation model of the Magnetic levitation is 
implemented into control structure with purpose of control on 
steady state defined by a reference trajectory, which is verified 
in Matlab/Simulink language. 
 In this paper a technique is proposed that gives a good control 
for the magnetic levitation. An online control algorithm is 
structured using the radial basis function neural network 
(RBFNN). The magnetic levitation parameters are estimated on 
line and are used to update the weights of the RBFNN. The 
weight update equations are derived based on the least mean 
squares principle. The RBFNN virtually models the inverse of 
the magnetic levitation and thus the output tracks the reference 
trajectory. This scheme is exposed to several types of 
disturbances for wide range of operating conditions. 
 

2. SYSTEM DESCRIPTION  
     Magnetic levitation system considered in the current 
analysis is consisting of a ferromagnetic ball suspended in a 
voltage-controlled magnetic field. Fig. 1 shows the schematic 
diagram of magnetic levitation system. 
     Coil acts as electromagnetic actuator, while an 
optoelectronic sensor determines the position of the 
ferromagnetic ball. By regulating the electric current in the 
circuit through a controller, the electromagnetic force can be 
adjusted to be equal to the weight of the steel ball, thus the ball 
will levitate in an equilibrium state. But it is a nonlinear, open 
loop, unstable system that demands a good dynamic model and 
a stabilized controller [18]. 
 

 
 

Dynamic behavior of magnetic levitation system can be 
modeled by the study of electromagnetic and mechanical sub 
systems. Electromagnetic force produced by current is given by 
the Kirchhoff's voltage law[18][19];  

 

dt
ixdLiRVVtE LR

)()( +=+=        (1) 

Where )(tE  is applied voltage, )(ti  is current in the coil of 
electromagnet, R  is coil's resistance and L  is coil's inductance. 

In mechanical part, free body diagram of ferromagnetic 
ball suspended by balancing the electromagnetic force ),( ixfem

 

and gravitational force gf . Net force netf  acting on the ball is 
given by Newton’s 3rd law of motion while neglecting friction, 
drag force of the air etc. 

emgnet fff −=                                                                                                                                  

2)(
x
iCmgxm −=                    (2) 

Where m  is mass of ball, x  is position of the ball, g  is 
gravitational constant and C  is magnetic force constant. 

Equation 1 indicates that )(xL  is a nonlinear function of 
balls position x . Various approximations have been used for 
determination of inductance for a magnetic levitation system. 
If we take the approximation that inductance varies with the 
inverse of ball’s position, that is 

x
xL

LxL 00
1)( +=                        (3) 

Where 1L  is the constant inductance of the coil in the 

absence of ball, 0L  is the additional inductance contributed by 

the presence of the ball, 0x  is the equilibrium position. 
Substituting equation (3) into (1) results in 

dt
dx

x
ixL

dt
diLiRtem )()( 2

00−+=       (4) 

A conservation of energy argument shows that 
200 xLC = . The ball's velocity is v  so;  

dt
dxv =   

Combining the above with xx =1 , vx =2 , ix =3  and 

meu = , the system equations in state-space form are [20] 
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The system was linearized around a point 101 xx = , 
which results in state vector as; 

TxxxX ][ 3020100 =              (6) 
At equilibrium, time rate derivative of x  must be equal to 

zero i.e. 020 =x . Also equilibrium current can be evaluated 
from equation (2) and it must satisfy the following condition; 

C
gmxx 1030 =                              (7) 

Thus we can write the linearized model in state space 
form as under; 

 

 

 
Fig.  1.  Schematic Diagram of Magnetic Levitation 

System. 
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     The linear system described in equation 8 is unstable 
and controllable. Therefore, the pole placement method is used 
to determine a value of nRK ×∈ 1  that will produce a desired 
set of closed-loop poles. Ackermann's formula can be used for 
pole placement. Ackermann's formula (1972) is a direct 
evaluation method. It is only applicable to SISO systems [21]. 

3. SELF TUNING REGULATOR WITH NEURAL 
NETWORK 

Fig.2 is the proposed structure. Autoregressive with 
exogenous input (ARX) is used to identify the dc motor and 
found the model.  The model coefficients are updated online 
depending on magnetic levitation parameters variation. These 
coefficients are fed the weight update block which trains the 
controller whether RBFNN or PI controller using the least 
mean square LMS algorithm. 

 
 
 

 
3.1 ARX model 

     The process is modeled by an ARX model [22], whose 
output is given by 
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Or in terms of 1−q  operator 
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3.2 radial basis functions neural networks 

     A single input single output radial basis function neural 
network (SISO RBFNN) is shown in Fig. 3. It consists of an 
input node )(tr , a hidden layer with n  neurons and an output 

node )(tx . Each of the input nodes is connected to all the nodes 
in the hidden layer through unity weights (direct connection). 
While each of the hidden layer nodes is connected to the output 
node through some weights

0
,,1 nww   . 

     Each neuron finds the distance d  of the input and its 
center and passes the resulting scalar through nonlinearity. So 
the output of the hidden neuron is given by [8, 20] 
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ic  is the center of thi  hidden layer node 

where 0,,2,1 ni = ,Σ  is the norm matrix and (.)φ  is the 
nonlinear basis function. Normally this function is taken as a 
Gaussian function of width β . The output )(tx  is a weighted 
sum of the outputs of the hidden layer, given by 

∑
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0
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n

i
ii ctrwtx φ                         (13) 

     As we see the radial basis function (RBF) network 
utilized a radial construction mechanism. This gives the hidden 
layer parameters of RBF networks a better interpretation than 
for the multilayer perceptron network MLP, and therefore 
allows new, faster training methods. 

 

 
3.3 parameters estimation for self-tuning of 

RBFNN/PI 
The parameters of the magnetic levitation model are 

estimated online and are used to update the coefficients of the 
controller (weights of the RBFNN / parameters of PI). The 
weight/coefficient update equations are derived based on a 
recursive scheme (least mean squares principle). This previous 
parameters are updated by minimizing the performance index 
I given by [9] 

)(2
2
1 teI =                              (14) 

 
Fig. 3: A general RBF network 

 

 
Fig.2: Proposed self-tuning magnetic levitation regulator 

structure 
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)()()( txtrte −=                    (15) 

     Where )(tr  is the reference input signal and )(tx  is the 
output position of the ball of the magnetic levitation model. The 
coefficients of the ARX model and the weights of the 
RBFNN/parameters of the PI are updated in the negative 
direction of the gradient as, 
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     Where [ ]mn bbaa  11=θ   is the parameter vector,  

[ ]
021 nwwwW =   is the weight vector for RBFNN, 

[ ]ip kkPI = vector for the parameters 

proportional-integral (PI) and µ  is the learning parameter. The 
variable K  is used to show the iteration number of training. 

     Keeping the regressions of the variables in the system in a 
regression vector ψ as   

( ))()()()1()( dmtedtentxtxt −−−−−−−= ψ  and finding 

partial derivatives. 

θθ ∂
∂

=
∂
∂ )(

2
1 2 teI

                        (19) 

))()(()( twtrte −
∂
∂

=
θ

               (20) 

( )
( ) 











++−

−−−

∂
∂

=
−−−

−−

)(

)()(
)(

1
1

1
1

teqqbqb
txqaqatr

te
m

dm
m

n
n





θ
  (21) 

)()( tteI ψ
θ

−=
∂
∂

                          (22) 

     The final parameter update equation will be, 
)()()()1( tteKK ψµθθ +=+     (23) 

     The partial derivatives for the weights are derived as 
follows, 
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The final weight update equation will be, 
)()()()()1( 1 tqqBteKWKW dφµ −−+=+                                                                       

But the final coefficients update equation of PI will be, 
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  (27) 

st  is the sample time. 

4. SIMULATION RESULTS 
      
The offered self-tuning regulator (ST R) structure designed 

to overcome the nonlinearity of the system and to improve the 
system's response performance. The magnetic suspension has 
many uncertainties, e.g. magnetic field distribution, variation of 
coil inductance, etc.  

The performance was compared in terms of the response to 
square wave input fig.4. The magnetic levitation system 
consists of a steel ball of mass 50 g. a good controller should be 
able to control the position of the levitated ball even when the 
weight of the ball changes fig.5. We notice amounts of 
parameters of the ARX model increase directly proportional 
with growth of mass with the PI against radial basis self tuning 
and maintains the track relatively. 

Fig.6 interprets that there isn't modification in the response 
of the system as well as values of model parameters when the 
coil resistance varies. Likewise, the parameters values expand 
when the inductance of the electromagnet increases when using 
the RBFNN; But with the PI affects on the trajectory and the 
parameters value that explained in fig.7. Fig.8, the sinusoidal 
output doesn't follow the track exactly but PI case is the worst. 
Finally, the controller exposed to noise at the position output at 
specific time period 300250 ≤≤ t and the output of 
self-tuning regulator (STR) structure follows the track precisely 
at the RBFNN case but the output of PI self-tuning regulator 
(STR) structure pursue the track with some error fig.9. 
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Fig.4: the output of self-tuning magnetic levitation 
system for a square wave reference 
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 Fig.5: The effect of variance for the ball mass (a) 
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(b) PI 

Fig.6: The effect of variance for the coil resistance 
Ω= 3R  at 300≥t  
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Fig.7:The effect of variance for the inductance of 
the electromagnet at 300≥t   (a) HL 1.= (b) 

HL 05.=  
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(b) PI 

Fig.8: the output of self-tuning magnetic levitation system 
for a sine wave reference with different frequency 
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5. CONCLUSIONS 
     This paper introduces a very simple structure for control the 
magnetic levitation that updates itself online. MLS are 
generally highly nonlinear and open loop unstable systems.  
The exact model of the MLS needs not to be known and just the 
estimates are enough to drive the RBFNN as the process 
inverse.  
The adaptive self-tuning regulator introduces a good solution 
for control the maglev even if the model meets different 
disturbances. 
 The RBFNN is a fast neural network compared with others 
type due to using least mean squares principle as training 
algorithm. Its structure has 2 neurons in hidden layer. 
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